MTD 533X Multiple Sensor Detector.

The pro for all requirements.
A single fire detector for all applications
Innovative and flexible
In many RAL colours
Made in Europe
Active fire prevention.
Automatic fire detectors monitor buildings and raise the alarm without delay, as soon as they detect a fire. Vastly varying environmental conditions – such as heat accumulation due to activities in industrial kitchens and workshops or a rapid change in temperature in open areas due to stormy conditions – place extremely high demands on fire safety.
In this scenario a fire detector should not just wait passively for the first indication of a fire, but should also actively monitoring its surroundings for changes in conditions. An intelligent self learning detector, which independently detects the conditions in its environment, and which permanently adapts automatically and dynamically to them.

Innovative, versatile and flexible.
Fire detectors improve security, but are also expected to satisfy aesthetic demands. The MTD 553X is available in many RAL colours so that it also blends in precisely to its surroundings.
There is a base unit for countersunk fitting available to ensure an elegant solution and also parallel indicators can be connected. If required, an integrated siren can also be used for acoustic alarm notification.

A single fire detector for all applications.
The MTD 533X multiple sensor detector, with its two sensory organs, is perfect for active fire prevention.
Its integrated smoke and heat sensors allow it to reliably detect all types of fire, even under extreme conditions, even as they form. Depending on the area in which it is to be used, the MTD 533X can be deployed as a smoke detector, temperature detector or as a multiple criteria detector. The selection is made by simple configuration, and can also be reprogrammed retrospectively, e.g. due to structural changes or changes to prevailing environmental conditions.

European Standards.
The MTD 533X of course fulfils all relevant Austrian and European standards, in accordance with which it is tested and approved. The production process uses state of the art technology, while the materials used also do not contain harmful substances.
The detector is developed and manufactured exclusively in Europe in order to guarantee the greatest possible level of quality.
Optimized response behaviour

Innovative CUBUS levelling

Configurable heat sensor

Periodic self-tests
Sensitivity
A heat sensor with class.
The heat sensor can be configured for the standard classes A1, A2 and B in accordance with EN 54-5, and for special areas of application also with the index R or S in accordance with EN 54-5. Three standard classes in combination with the index R or S give nine different options for optimal adaptation to environmental conditions.

Operational security assured by self-tests.
The MTD 533X checks its own ability to function properly. It constantly checks itself, while monitoring all operating parameters and reports contamination, short circuits and other faults as required. The MTD 533X carries this self-test out once a second. Even in a disabled state, it is also ready for use and to sound the alarm. If it sends an alarm from this state to the fire alarm control panel, then it will only be used for the execution of measures relating to the formation of fire zones, e.g. closing fire prevention doors, and no unnecessary alarm will be sent to the fire brigade in this instance.

Interactive communication with the fire alarm control panel.
The MTD 533X communicates intensively with the control panel and reports to it even the smallest deviation from the normal state. With its intelligent decision-making logic the MTD 533X connects smoke and temperature signals, and is therefore sure to only report actual fires. As soon as the predefined signalling values are exceeded, then the alarm is triggered. If required a pre-alarm can also be programmed.

Innovative CUBUS levelling.
The MTD 533X uses a unique specially developed technology: CUBUS levelling. The detector constantly monitors its surrounding conditions with regard to the absolute maximum temperature as well as the relative increase in temperature per minute and from these factors calculates the relevant sensitivity to smoke and temperature for wherever it is deployed. In this way, the sensitivity of the smoke sensor permanently adapts automatically and dynamically to the surrounding environmental conditions. If the temperature exceeds the absolute or relative values, then the smoke chamber’s sensitivity is also automatically adapted accordingly. The detector is now more alert as to whether traces of visible or invisible smoke particles can be detected. If the temperature falls again, then the sensitivity of the smoke sensor also decreases.

Response characteristics
Innovative CUBUS levelling.
The MTD 533X uses a unique specially developed technology: CUBUS levelling. The detector constantly monitors its surrounding conditions with regard to the absolute maximum temperature as well as the relative increase in temperature per minute and from these factors calculates the relevant sensitivity to smoke and temperature for wherever it is deployed. In this way, the sensitivity of the smoke sensor permanently adapts automatically and dynamically to the surrounding environmental conditions. If the temperature exceeds the absolute or relative values, then the smoke chamber’s sensitivity is also automatically adapted accordingly. The detector is now more alert as to whether traces of visible or invisible smoke particles can be detected. If the temperature falls again, then the sensitivity of the smoke sensor also decreases.

Designed for optimized detection.
Using the most up-to-date computer-assisted methods and as a result of more than 800 fire tests the flow behaviour has been optimized to such an extent that, even under extreme conditions – e.g. the formation of heats below the ceiling as a consequence of high external temperatures, a quick and completely safe detection can be guaranteed. Optimized smoke penetration and the balance temperature symmetry guarantee that the MTD 533X is able to distinguish between deceptive levels and an emergency.
MTD 533X

Interactive communication with the control panel
Forward and backward compatibility
Rapid start-up time
Individual serial numbers
Forward and backward compatibility. The benefits of the MTD 533X also rapidly become apparent when used in conjunction with existing operational Schrack Seconet fire detection systems. With its backward compatibility which goes back two generations, it is possible to upgrade a system that is in operation at any time. The MTD 533 is already equipped today to be able to be integrated in future generations of control panels and with future detection technologies. Since the MTD 533X can be used in any system, there is the opportunity for the first time to adopt a single detector strategy. The era of different types of detectors is history. The MTD 533X will accompany you into the future of fire prevention.

Quick commissioning process. The Integral X-LINE allows up to 250 elements to be connected on a loop circuit of up to 3,500m in length. The specially optimized start-up process means that the start-up commands are sent to all detectors more or less simultaneously, which, in particular in large systems in large buildings, reduces the commissioning time considerably. The particularly easy to install construction of the base and case allows quick and simple connection and wiring which can be completed very quickly.

Always up-to-date. The MTD 533X automatically makes information available, which can be used to determine the extent of required reconditioning work in advance. Furthermore, the detector is fitted with a memory module for saving events affecting the detector as well as around it. The MTD 533X uses a timestamp function to record when an alarm was triggered or when or what functional faults occurred.

Individual Serial Numbers. The MTD 533X fitted with a serial number, which during the commissioning process can also be used as a pull-off sticker. Once the system has started up, the sticker number can be compared with the serial number sent by the detector, in order to correct system topology faults. A time-consuming search for faults is therefore avoided.